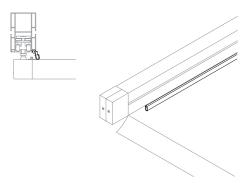


Optional front beam / gutter & post upgrade sizes

Rafter profile 80x125mm

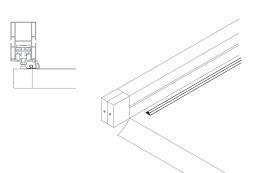
Post 80x95mm
Hood support
Motor support
Motor box
Hood end
Hood sheet
Fabric

Fabric profile

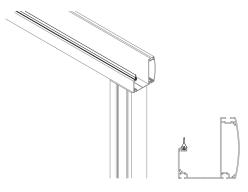

Motor flap

Wall bracket

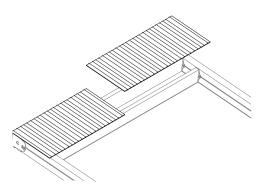
Post base


Front beam / gutter 120x130mm

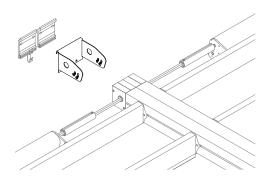
Optional back beam & brackets


Rafter rubber seal

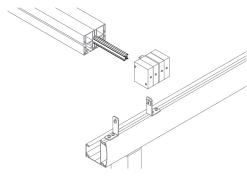
The rafter rubber seal is integrated into the edge of the rafter to help stop water dripping over the edge of the fabric by providing a soft barrier along the side of the system.


Fabric tube spline rib

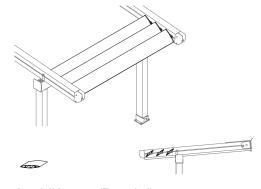
The fabric tube spline rib is used in conjunction with the rafter rubber seal when systems are side by side to offer a greater protection from water dripping between systems. Fixed to the top side of the fabric the tube spline rib folds in and out with the system to create a second water barrier.


Gutter seal

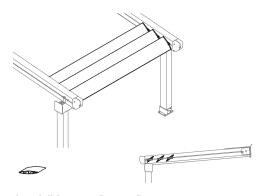
The gutter seal is designed to assist the fabric to come as close as possible to the gutter profile when in the extended position. The seal helps prevent water leaks at the front of the system or water splashing from the gutter.


Aluminium hood sheets

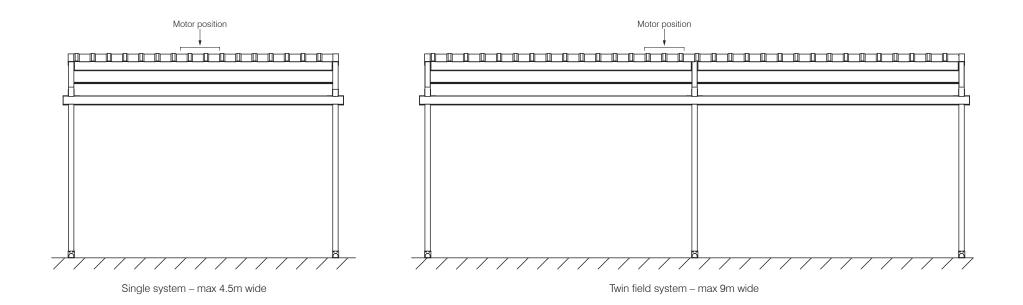
The pressed aluminium sheets offer an attractive cover for when the system is retracted back and not in use. The low-profile sheet is colour matched to the system and ensures the fabric stays clean from above when not extended.

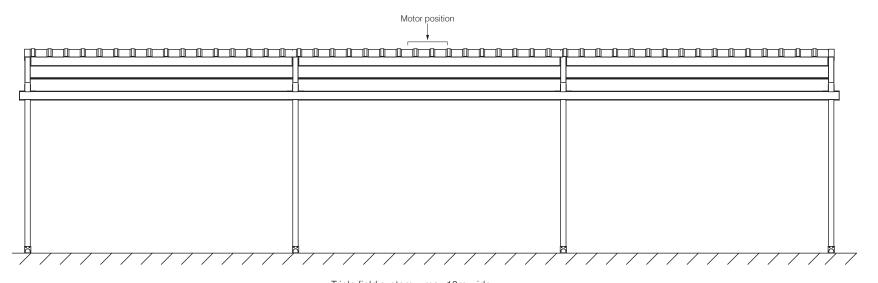

Double rafter wall bracket

Double rafter wall bracket enables two rafter profiles to be joined at the back by one bracket making installation possible with less of a gap between rafter profiles

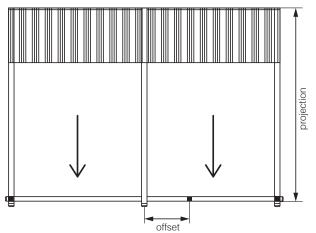

Rafter joining profile

The rafter joining profile is a patented system used when joining two rafters side by side for reduction is water leaks and reduced overall gap between systems.


Aerofoil louvres (Extended)


Additional short length of rafter profile may be added to the order projection to incorporate aerofoil louvre fins for extra shade and an architectural edge

Aerofoil louvres (Internal)


Aerofoil louvre fins for shade and design may be added within the existing projection.

Triple field system - max 13m wide

Standard post placement options

OFFSET MIDDLE POST WITHOUT BEAM UPGRADE

Projection (m)	Maximum offset (mm)
3.00	700
4.00	600
5.00	500
6.00	400
7.00	300

010110121 001 III021								
Projection (m)	Maximum inset (mm)							
3.00	500							
4.00	450							
5.00	400							
6.00	350							
7.00	300							

Post / front beam upgrade options

FRONT BEAM SPAN WITHOUT MIDDLE POST

Projection (m)	Maximum span (m)
6.00	6.00

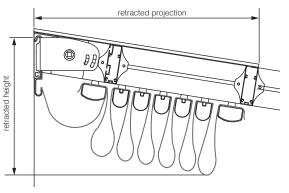
(Only possible with post / beam upgrade on HS12 NOVO)

Projection (m)	Maximum inset (mm)
3.00	950
4.00	900
5.00	850
6.00	800
7.00	750

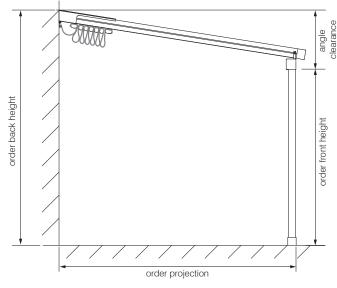
(Only possible with post / beam upgrade on HS12 NOVO)

NOVO HS12 RETRACTED SYSTEM DIMENSIONS AT 10°

No of fabric	System projection (m)												Retracted
profiles	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	fabric (mm)
4	358												504
5	321	385											564
6	303	355	406										624
7		338	381	424									684
8			366	402	439								745
9				389	421	453							805
10					410	438	467						865
11						428	454						925
12							445	469					985
13								461	483		_		1045
14								457	476	497		_	1105
15									473	491	510		1165
16										488	505	522	1225
17											503	519	1285
18												517	1345
				Re	tracted	height	at 10° a	ngle (m	m)				


NOVO HS12 MINIMUM ANGLE CHART FOR WATER RUN OFF

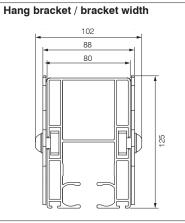
Rafter			Projection (m)								Angle
spacing (m)	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	Angle
2.00	435	470	505	540	575	610	645	680	715	750	4°
2.50	478	521	565	608	652	695	739	782	826	869	5°
3.00	523	575	628	680	733	785	838	890	943	995	6°
3.50	610	680	750	820	890	960	1030	1100	1170	1240	8°
4.00	655	734	813	892	971	1050	1129	1208	1287	1366	9°
4.50	700	788	876	964	1052	1140	1228	1316	1404	1492	10°
Angle clearance (mm)											

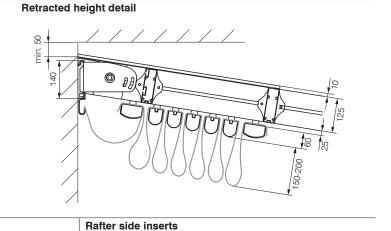

HS12 Order front height

Maximum standard post height 2.8m. Upgrade to custom steel posts for increased height available on application, subject to site specific details and installation requirements.

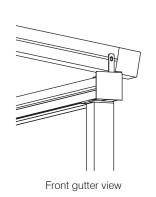
Bold figures indicate the retracted height of fabric if the standard number of profiles for this size / angle are used. A reduction in height can be achieved by adding extra fabric profiles, which will attract a surcharge.

Retracted height measurements

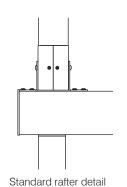

Minimum angle measurements

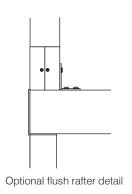


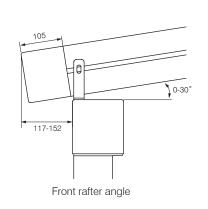
Rafter spacing

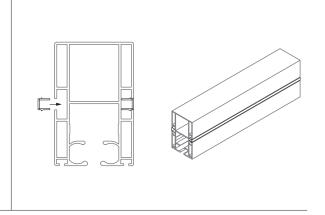

Wall bracket 5 x holes 14x30 * Custom lengths available on request 133

120

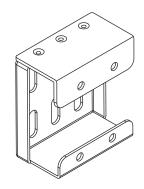


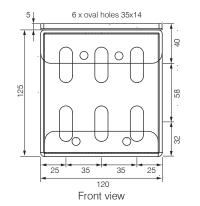


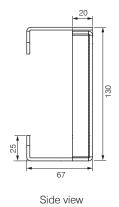

Rafter detail



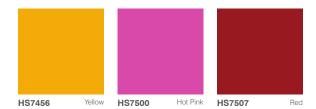
Installation bracket




Post base


* Base has 2 x 13Ø holes for fixing down Optional spout post base

Optional back beam bracket


Standard post base

FABRIC COLOURS

Fabric colour

		Solar reflection	Solar absorbance	Thermal comfort	Solar transmittance					
Translucent (680g/sqm)										
	HS114	78	12	1 .c	10					
	HS7462	73	16	Î ,c	9					
	HS7458	68	24	$\mathfrak{g}_{\mathfrak{c}}$	5					
	HS7409	9	90	Ĵ .c	0					
	HS7534	14	86	1°c	0					
	HS654	46	54	$\mathfrak{J}_{\mathfrak{C}}$	0					
	HS652	26	74	g °c	0.1					
	HS7419	6	94	$\mathfrak{g}_{\mathfrak{c}}$	0					
	HS7456	53	35	∫ ,c	7					
	HS7500	47	42	$\mathfrak{g}_{\mathfrak{c}}$	0.7					
	HS7507	24	71	∫ ,c	0.2					
	HS941	27	66	1°c	0					
	HS995	22	72	1°c	0.1					
	HS810	5	95	1°c	0					
		Sunblock ((850g/sqm)							
	HS7279	72	28	Ĵ .c	0					
	HS7398	68	32	Ĵ .c	0					
	HS654	45	55	Ĵ ℃	0					
	HS7463	72	28	$\mathfrak{J}_{\mathfrak{C}}$	0					
	HS7464	68	32	Î ,c	0					
	HS7469	45	55	1°c	0					
	HS7481	72	28	g .c	0					
	HS7482	68	32	$\mathfrak{g}_{\mathfrak{c}}$	0					
	HS7543	72	28	ĵ °c	0					
	HS7545	45	55	ĵ .c	0					
	HS7511	68	32	ĵ °c	0					
	HS7510	16	84	ĵ .c	0					
	HS7512	45	55	\mathfrak{J}_{c}	0					